Mean Value Cross Decomposition for Two-Stage Stochastic Linear Programming with Recourse
نویسندگان
چکیده
We present the mean value cross decomposition algorithm and its simple enhancement for the two-stage stochastic linear programming problem with complete recourse. The mean value cross decomposition algorithm employs the Benders (primal) subproblems as in the so-called “L-shaped” method but eliminates the Benders master problem for generating the next trial first-stage solution, relying instead upon Lagrangian (dual) subproblems. The Lagrangian multipliers used in defining the dual subproblems are in turn obtained from the primal subproblems. The primal subproblem separates into subproblems, one for each scenario, each containing only the second-stage variables. The dual subproblem also separates into subproblems, one for each scenario which contains both firstand second-stage variables, and additionally a subproblem containing only the first-stage variables. We then show that the substantial computational savings may be obtained by solving at most iterations only the dual subproblem with the first-stage variables and bypassing the termination test. Computational results are highly encouraging.
منابع مشابه
Reconfiguration of Supply Chain: A Two Stage Stochastic Programming
In this paper, we propose an extended relocation model for warehouses configuration in a supply chain network, in which uncertainty is associated to operational costs, production capacity and demands whereas, existing researches in this area are often restricted to deterministic environments. In real cases, we usually deal with stochastic parameters and this point justifies why the relocation m...
متن کاملTwo-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods: Theory
We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results in Zhao [16] wherein it was shown that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrie...
متن کاملL-shaped decomposition of two-stage stochastic programs with integer recourse
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of...
متن کاملDecomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse
Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...
متن کاملA cross-decomposition scheme with integrated primal-dual multi-cuts for two-stage stochastic programming investment planning problems
We describe a decomposition algorithm that combines Benders and scenariobased Lagrangean decomposition for two-stage stochastic programming investment planning problems with complete recourse, where the first-stage variables are mixedinteger and the second-stage variables are continuous. The algorithm is based on the cross-decomposition scheme and fully integrates primal and dual information in...
متن کامل